Упорядоченное поле

Упорядоченное полеалгебраическое поле, для всех элементов которого определён линейный порядок, согласованный с операциями поля. Наиболее практически важными примерами являются поля рациональных и вещественных чисел. Термин впервые предложил Эмиль Артин в 1927 г.

Содержание

Определение

Пусть — алгебраическое поле и для его элементов определён линейный порядок, то есть задано отношение (меньше или равно) со следующими свойствами:

  1. Рефлексивность: .
  2. Транзитивность: если и , то .
  3. Антисимметричность: если и , то .
  4. Линейность: все элементы сравнимы между собой, то есть либо , либо .
  5. Согласованность со сложением: если , то для любого z: .
  6. Согласованность с умножением: если и , то .

Связанные определения

  • Для удобства записи вводятся дополнительные вторичные отношения:
Отношение больше или равно: означает, что .
Отношение больше: означает, что и .
Отношение меньше: означает, что .
  • Формула с любым из этих 4 отношений называется неравенством.
  • Числа, бо́льшие нуля, называются положительными, а меньшие нуля — отрицательными.

Конструктивное построение порядка

Один из способов определить в поле F линейный порядок — выделить в нём подмножество положительных чисел P, замкнутое относительно сложения и умножения и обладающее следующим свойством. три подмножества , ноль и не пересекаются и вместе образуют разбиение всего поля.

Пусть такое P выделено. Обозначим (это множество тоже замкнуто относительно сложения и умножения) и определим линейный порядок в F следующим образом:

, если

Все приведенные выше аксиомы порядка тогда выполнены.

Некоторые свойства

  • Всякий элемент упорядоченного поля относится к одной и только одной из трёх категорий: положительные числа, отрицательные числа, нуль. Если положителен, то отрицателен, и наоборот.
  • В любом упорядоченном поле и квадрат любого ненулевого элемента положителен.
  • Однотипные неравенства можно складывать:
Если и , то .
  • Неравенства можно умножать на положительные элементы:
Если и , то .

Место в иерархии алгебраических структур

  • Подполе упорядоченного поля наследует родительский порядок и, следовательно, тоже является упорядоченным полем.
  • Характеристика упорядоченного поля всегда равна нулю. Поэтому конечное поле не может быть упорядочено.
  • Поле допускает упорядочение тогда и только тогда, когда не может быть представлена как сумма квадратов элементов поля. Поэтому нельзя продолжить вещественный порядок на комплексные числа.
  • Наименьшее упорядоченное поле — это поле рациональных чисел, которое может быть упорядочено только одним способом. Это или изоморфное ему рациональное поле содержится как подполе в любом другом упорядоченном поле. Если в поле не существует элемента больше, чем все элементы рационального поля, поле называется архимедовым.

Примеры

Литература

  • Бурбаки Н. Алгебра. Многочлены и поля. Упорядоченные группы. М.: Наука, 1965.
  • Ван дер Варден Б. Л. Алгебра. 2 изд., М.: Наука, 1979, 469 с.
  • Ленг С. Алгебра. М: Мир, 1968.

Упорядоченное поле.

© 2021–2023 sud-mal.ru, Россия, Барнаул, ул. Денисова 68, +7 (3852) 74-95-52