Закон сохранения заряда в изолированной системе, закон сохранения заряда следует из, закон сохранения заряда простыми словами

Закон сохранения электрического заряда гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется.

Закон сохранения заряда выполняется абсолютно точно. На данный момент его происхождение объясняют следствием принципа калибровочной инвариантности[1][2]. Требование релятивистской инвариантности приводит к тому, что закон сохранения заряда имеет локальный характер: изменение заряда в любом наперёд заданном объёме равно потоку заряда через его границу. В изначальной формулировке был бы возможен следующий процесс: заряд исчезает в одной точке пространства и мгновенно возникает в другой. Однако, такой процесс был бы релятивистски неинвариантен: из-за относительности одновременности в некоторых системах отсчёта заряд появился бы в новом месте до того, как исчез в предыдущем, а в некоторых — заряд появился бы в новом месте спустя некоторое время после исчезновения в предыдущем. То есть был бы отрезок времени, в течение которого заряд не сохраняется. Требование локальности позволяет записать закон сохранения заряда в дифференциальной и интегральной форме.

Содержание

Закон сохранения заряда и калибровочная инвариантность

Физическая теория утверждает, что каждый закон сохранения основан на соответствующем фундаментальном принципе симметрии. Со свойствами симметрий пространства-времени связаны законы сохранения энергии, импульса и момента импульса. Законы сохранения электрического, барионного и лептонного зарядов связаны не со свойствами пространства-времени, а с симметрией физических законов относительно фазовых преобразований в абстрактном пространстве квантовомеханических операторов и векторов состояний. Заряженные поля в квантовой теории поля описываются комплексной волновой функцией, где x - пространственно-временная координата. Частицам с противоположными зарядами соответствуют функции поля, различающиеся знаком фазы , которую можно считать угловой координатой в некотором фиктивном двумерном "зарядовом пространстве". Закон сохранения заряда является следствием инвариантности лагранжиана относительно глобального калибровочного преобразования типа , где Q - заряд частицы, описываемой полем , а - произвольное вещественное число, являющееся параметром и не зависящее от пространственно-временных координат частицы. Такие преобразования не меняют модуля функции, поэтому они называются унитарными U(1).[3][4]

Закон сохранения заряда в интегральной форме

Вспомним, что плотность потока электрического заряда есть просто плотность тока. Тот факт, что изменение заряда в объёме равно полному току через поверхность, можно записать в математической форме:

Здесь — некоторая произвольная область в трёхмерном пространстве, — граница этой области, — плотность заряда, — плотность тока (плотность потока электрического заряда) через границу.

Закон сохранения заряда в дифференциальной форме

Переходя к бесконечно малому объёму и используя по мере необходимости теорему Стокса можно переписать закон сохранения заряда в локальной дифференциальной форме (уравнение непрерывности)

Закон сохранения заряда в электронике

Правила Кирхгофа для токов напрямую следуют из закона сохранения заряда. Объединение проводников и радиоэлектронных компонентов представляется в виде незамкнутой системы. Суммарный приток зарядов в данную систему равен суммарному выходу зарядов из системы. В правилах Кирхгофа предполагается что электронная система не может значительно изменять свой суммарный заряд.

Примечания

  1. Яворский Б. М. «Справочник по физике для инженеров и студентов вузов» / Б. М. Яворский, А. А. Детлаф, А. К. Лебедев, 8-ое изд., М., ООО «Издательство Оникс», ООО «Издательство Мир и образование», 2006, ISBN 5-488-00330-4 (ООО «Издательство Оникс»), ISBN 5-94666-260-0 (ООО «Издательство Мир и образование»), ISBN 985-13-5975-0 (ООО «Харвест»), УДК 530(035) ББК 22.3, Разд. VII "Основы ядерной физики и физики элементарных частиц", Гл. 4 "Элементарные частицы", п 3 "Гравитация. Квантовая электродинамика.", с. 952;
  2. Ландау Л. Д., Лифшиц Е. М. «Теоретическая физика», уче. пособ. для вузов, в 10 т. / т. 4, «Квантовая электродинамика», 4-е изд., исправл., М., «Физматлит», 2001, 720 с., тир. 2000 экз., ISBN 5-9221-0058-0 (т. 4), гл. 5 «Излучение», п. 43 «Оператор электромагнитного взаимодействия», с. 187—190;
  3. Окунь Л.Б. Лептоны и кварки, изд 3-е, стереотипное, М.: Едиториал УРСС, 2005, 352 с., ISBN 5-354-01084-5, гл. 19 Калибровочная инвариантность. Глобальная абелева симметрия U(1)., с. 179
  4. Яворский Б.М. Справочник по физике для инженеров и студентов вузов. / Б.М. Яворский, А.А. Детлаф, А.К. Лебедев, 8-е изд. перераб. и испр., М., ООО "Издательство Оникс", ООО "Издательство Мир и Образование", 2006, 1056 стр., ил., ISBN 5-488-00330-4 (ООО "Издательсто Оникс"), ISBN 5-94666-260-0 (Издательство "Мир и Образование"), ISBN 985-13-5975-0 (ООО "Харвест"), Раздел VII. Основы ядерной физики и физики элементарных частиц. Глава 4. "Элементарные частицы" п. 1 "Принципы теории" cтр. 912-925

Закон сохранения заряда в изолированной системе, закон сохранения заряда следует из, закон сохранения заряда простыми словами.

Категория:1929 год в науке, Категория:Статьи проекта Мифология неизвестного уровня высокой важности, Список округов Алабамы, Рецюковщина.

© 2021–2023 sud-mal.ru, Россия, Барнаул, ул. Денисова 68, +7 (3852) 74-95-52